SYNTHESIS OF β , γ -UNSATURATED CARBOXYLIC ACID DERIVATIVES BY THE NOVEL Ni(CO) $_4$ -INDUCED RING-OPENING CARBONYLATION REACTION OF 1,1-DIBROMO-2-CHLOROCYCLOPROPANES

Toshikazu HIRAO, * Shinichiro NAGATA, and Toshio AGAWA

Department of Applied Chemistry, Faculty of Engineering, Osaka University,

2-1 Yamadaoka, Suita, Osaka 565

1,1-Dibromo-2-chlorocyclopropanes underwent the Ni(CO) $_4$ -induced ring-opening carbonylation reaction with alcohol or amine giving the β,γ -unsaturated carboxylic acid and dicarboxylic acid derivatives. Use of N,N-dimethyltrimethylsilylamine as an initial nucleophile in the presence of benzaldehyde led to a dienecarboxamide presumably via codensation of the nickel enolate intermediate.

The Ni(CO) $_4$ -induced carbonylation reactions of gem-dibromocyclopropanes permit gem-functionalization leading to a variety of cyclopropanecarboxylic acid derivatives. This unique transformation is considered to depend on the intermediacy of nickel enolate compounds. We describe herein a novel ring-opening carbonylation reaction, which is effective for a synthesis of β,γ -unsaturated carboxylic acid derivatives.

C1 Br
$$+$$
 RQH $\frac{\text{Ni(CO)}_4}{\text{DMF}}$ $+$ COQR $+$ $\frac{\text{R'}}{\text{COQR}}$ $+$ $\frac{\text{COQR}}{\text{COQR}}$ $\frac{1}{2}$ Q=0, NH, S $\frac{2}{2}$ $\frac{3}{2}$

Treatment of the 1,1-dibromo-2-chlorocyclopropane 1^{3} with 1-propanol in the presence of Ni(CO)₄ in DMF at 70 °C gave the β , γ -unsaturated ester 2 (Q=O) and the corresponding diester 3 (Q=O) as major products. No α , β -unsaturated isomer was detected. The 2-chlorocyclopropanecarboxylate 4 (Q=O) derived by normal reductive carbonylation was produced in a small amount. Some results including the preparation of β , γ -unsaturated carboxamides and carbothiolate are listed in Table 1.

Without the addition of alcohol, the carbonylation reaction did not occur and $\frac{1}{2}$ was recovered. This finding excludes the possibility that Ni(CO) $_4$ attacks $\frac{1}{2}$ at the first step. One of the plausible reaction paths is outlined in the following scheme. The nickel enolate complex $\frac{5}{2}$ (Q=O) might intervene as reported previously. Further displacement with the alkoxycarbonyl group (Z=COOR) results in the formation of $\frac{7}{2}$. Decarboxylation of $\frac{3}{2}$ or $\frac{7}{2}$ is assumed to lead to the $\frac{6}{2}$, unsaturated ester $\frac{2}{2}$ since a longer reaction time increased the $\frac{2a}{3a}$ ratio (Table 1). Another route to $\frac{2}{2}$ is explained by hydride transfer which gives the nickel enolate intermediate $\frac{6}{6}$.

The present method provides a versatile synthetic procedure for β,γ -unsaturated carboxylic acid derivatives from vinyl chlorides based on carbonylation with one-carbon homologation. Its utility was also demonstrated by preparing a precursor of the key intermediate, 7-hydroxy-3-octenoic acid, for the pyrenophorin synthesis 5,6) as shown by the bottom example of Table 1; the β,γ -unsaturated ester was produced exclusively. The corresponding diester and cyclopropanecarboxylate were not formed, this being in sharp contrast to the results mentioned above.

With N,N-dimethyltrimethylsilylamine as an initial nucleophile, $\overset{2)}{\sim}$ 1a underwent the similar ring-opening carbonylation reaction. This outcome contributes

another C-C bond formation between a nickel enolate intermediate and an electrophile. The Ni(CO) $_4$ -induced reaction of 1a with the silylamine and benzaldehyde was carried out leading to the dienecarboxamide 8a. It remains uncertain which of the enolate 6^{10} or 7^{11} participates in the condensation reaction. This method achieves the introduction of two functional groups into a cyclopropane with ring cleavage only by mixing the silylamine, 1, Ni(CO) $_4$, and benzaldehyde together in one flask.

$$\frac{1a + \text{Me}_{3}\text{SiNMe}_{2} + \text{PhCHO}}{2. \text{H}_{2}\text{O}} \xrightarrow{\text{1. Ni(CO)}_{4}, \text{ DMF, 70 °C, 3 h}} Ph^{\text{CONMe}_{2}}$$

Table 1. Preparation of Carboxylic Acid Derivatives by the Ni(CO) $_4\text{-Induced}$ Carbonylation Reaction of $\underline{\mathfrak{1}}^{\mathrm{a})}$

44	· · · · · · · · · · · · · · · · · · ·	
	RQH, equiv.	Isolated yield/ % (ratio)
Cl Br Br	PrOH 1	COOPr (COOPr) 2 C1, H coopr b) 2a 31 (61:29:10)
	2.2 ^{c)}	46 (35:61:4)
	2.2	57 (49:45:6)
la ≈	PrNH ₂ 2.2	CONHPr (CONHPr) 2 C1, H b) 62 (37:39:24)
Cl Br Br 1b	PrOH 2.2	COOPr (COOPr) 2 Cl. H COOPr b) 80 (43:40:17)
1b	PrNH ₂ 2.2	CONHPr (CONHPr) 2 Cl, H CONHPr b) 74 (43:38:19)
Br Br 1c	PrOH 2.2 e)	C1 COOPr (COOPr) ₂ (COOPrd) 33 (52:48:1) _f)
1c ∼	PhSH 2.2	Cosph $(Cosph)_2$ $(Cosph_2)_2$ $(Cosph_2)_2$ $(Cosph_2)_2$ $(Cosph_2)_2$ $(Cosph_2)_2$
C1 OCH ₂ Ph	PrOH 2.2	PrO OCH ₂ Ph 2d ^{d,g)}

a) Reaction temperature, 70 °C; time, 6 h. $Ni(CO)_4$, 7 equiv. b) An endo and exo mixture. c) Reaction time, 3 h. d) A cis and trans mixture.

e) 1-Propanol was not added. f) The starting compound $\stackrel{1}{\text{c}}$ was recovered.

g) The other products were not isolated.

This work was partially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture.

References

- 1) T. Hirao, Y. Harano, Y. Yamana, Y. Ohshiro, and T. Agawa, Tetrahedron Lett., 24, 1255 (1983).
- 2) T. Hirao, S. Nagata, Y. Yamana, and T. Agawa, Tetrahedron Lett., in press.
- 3) The 1,1-dibromo-2-chlorocyclopropanes $\frac{1}{2}$ were easily obtained by the addition of dibromocarbene to the corresponding vinyl chlorides.
- 4) P. W. Jolly, "Comprehensive Organometallic Chemistry," ed by G. Wilkinson, Pergamon Press (1982), Vol. 6, p. 37.
- 5) R. S. Mali, M. Pohmakotr, B. Weidmann, and D. Seebach, Liebigs Ann. Chem., 1981, 2272.
- 6) Another synthetic route to pyrenophorin via 7-hydroxy-cis-3-octenoic acid was explored by use of reductive deconjugation with diethyl phosphonate as a key reaction; T. Hirao, Y. Fujihara, K. Kurokawa, Y. Ohshiro, and T. Agawa, to be published.
- 7) The starting 1,1-dibromo-2-chlorocyclopropane 1d was prepared in the following way. 1,3-Dichloropropene was treated with the anion of ethyl acetoacetate, followed by decarboxylation in DMSO in the presence of LiCl. Thus obtained 6-chloro-5-hexen-2-one was reduced to the corresponding alcohol with NaBH4. After protecting the hydroxyl group, addition of dibromocarbene gave 1d.
- 8) To a mixture of 1a (1.0 mmol), N,N-dimethyltrimethylsilylamine (3.0 mmol), and benzaldehyde (3.0 mmol) in DMF (2.4 mL) was added Ni(CO)₄ (3.0 mmol) at room temperature. The resultant solution was stirred at 70 °C for 3 h. After removal of excess Ni(CO)₄ under the reduced pressure, the mixture was diluted with ether and filtered on celite 545. The ethereal solution was concentrated and flash column chromatographed to give N,N-dimethyl-2-(1-cyclohexenyl)cinnamamide (8a) in 31% yield.
- 9) The geometry of the benzylidene moiety was not determined yet although only one isomer was produced.
- 10) E. Yoshisato and S. Tsutsumi, J. Chem. Soc., Chem. Commun., 1968, 33; I. Rhee, I. Ryu, H. Omura, S. Murai, and N. Sonoda, Chem. Lett., 1979, 1435.
- 11) J. H. Nelson, P. N. Howells, G. C. DeLullo, and G. L. Landen, J. Org. Chem., 45, 1246 (1980). Decarboxylation of the adduct might lead to 8a.

(Received July 24, 1985)